Найти производную функции первого порядка
Данный онлайн калькулятор предназначен для решения производных функций первого порядка.
Производная служит обобщенным понятием скорости изменения функции. Производная f’(x) функции f(x) в точке x – это предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Нахождение производной функции называется дифференцированием функции.
Вам нет необходимости знать различные таблицы и формулы производных, так как для нахождения производной онлайн нужно ввести только исходную функцию, которую следует дифференцировать. В ответе выводится как найденная производная функция, так и график этой функции.
Калькулятор поможет найти производную функции первого порядка онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
|
Основные функции
модуль x: abs(x)
|
Производные
Для того, чтобы найти производную функции Важно подчеркнуть, что калькулятор выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.
|
«На главный экран»
«На главный экран»

: x^a
: Sqrt[x]
: x^(1/n)
: a^x
: Log[a, x]
: Log[x]
: cos[x] или Cos[x]
: sin[x] или Sin[x]
: tan[x] или Tan[x]
: cot[x] или Cot[x]
: sec[x] или Sec[x]
: csc[x] или Csc[x]
: ArcCos[x]
: ArcSin[x]
: ArcTan[x]
: ArcCot[x]
: ArcSec[x]
: ArcCsc[x]
: cosh[x] или Cosh[x]
: sinh[x] или Sinh[x]
: tanh[x] или Tanh[x]
: coth[x] или Coth[x]
: sech[x] или Sech[x]
: csch[x] или Csch[е]
: ArcCosh[x]
: ArcSinh[x]
: ArcTanh[x]
: ArcCoth[x]
: ArcSech[x]
: ArcCsch[x]
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции
напишите в окне гаджета: f[x, y, z,…,t], j, где
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где