Асимптоты функции
Данный калькулятор предназначен для нахождения асимптот графика функции онлайн, вычислит вертикальные, горизонтальные и наклонные асимптоты.
Асимптота – это прямая, к которой бесконечно близко приближается график функции, и график при этом бесконечно удаляется от начала координат. Знание уравнения асимптоты функции может быть полезно при анализе функции и построении ее графика.
В зависимости от поведения аргумента асимптоты разделяются на вертикальные, горизонтальные и наклонные. Вертикальная асимптота – это вертикальная линия вида x=α, если .
Точки разрыва функции и границы области определения являются основанием для нахождения вертикальных асимптот. Горизонтальная асимптота – горизонтальная прямая линия вида x=α, если . Наклонная асимптота – прямая вида y=kx+b; для существования наклонных асимптот, необходимо одновременное существование пределов .
Преимуществом онлайн калькулятора является то, что нет необходимости знать, как находить асимптоты графика функции. Достаточно только ввести функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Основные функции
модуль x: abs(x)
|
Пожалуйста напишите с чем связана такая низкая оценка:
«На главный экран»
«На главный экран»
(х(х+6)^2)^(1/3)