Точки перегиба графика функции

Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости онлайн. Этот калькулятор предоставляет информацию о точках перегиба графика функции и интервалах его выпуклости и вогнутости.

Просто введите функцию, и калькулятор выдаст следующую информацию:

Точки перегиба:
Калькулятор определит точки перегиба, где график функции меняет свою выпуклость или вогнутость.

Интервалы выпуклости и вогнутости:
Получите информацию о том, на каких интервалах график функции выпуклый и на каких вогнутый.



Основные функции

\left(a=\operatorname{const} \right)

  • x^{a}: x^a

модуль x: abs(x)

  • \sqrt{x}: Sqrt[x]
  • \sqrt[n]{x}: x^(1/n)
  • a^{x}: a^x
  • \log_{a}x: Log[a, x]
  • \ln x: Log[x]
  • \cos x: cos[x] или Cos[x]
  • \sin x: sin[x] или Sin[x]
  • \operatorname{tg}x: tan[x] или Tan[x]
  • \operatorname{ctg}x: cot[x] или Cot[x]
  • \sec x: sec[x] или Sec[x]
  • \operatorname{cosec} x: csc[x] или Csc[x]
  • \arccos x: ArcCos[x]
  • \arcsin x: ArcSin[x]
  • \operatorname{arctg} x: ArcTan[x]
  • \operatorname{arcctg} x: ArcCot[x]
  • \operatorname{arcsec} x: ArcSec[x]
  • \operatorname{arccosec} x: ArcCsc[x]
  • \operatorname{ch} x: cosh[x] или Cosh[x]
  • \operatorname{sh} x: sinh[x] или Sinh[x]
  • \operatorname{th} x: tanh[x] или Tanh[x]
  • \operatorname{cth} x: coth[x] или Coth[x]
  • \operatorname{sech} x: sech[x] или Sech[x]
  • \operatorname{cosech} x: csch[x] или Csch[е]
  • \operatorname{areach} x: ArcCosh[x]
  • \operatorname{areash} x: ArcSinh[x]
  • \operatorname{areath} x: ArcTanh[x]
  • \operatorname{areacth} x: ArcCoth[x]
  • \operatorname{areasech} x: ArcSech[x]
  • \operatorname{areacosech} x: ArcCsch[x]
  • [19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)


  • Рейтинг: 2.3 (Голосов 41)
    ×


    Пожалуйста напишите с чем связана такая низкая оценка:


    ×
    Для установки калькулятора на iPhone - просто добавьте страницу
    «На главный экран»
    Для установки калькулятора на Android - просто добавьте страницу
    «На главный экран»
    Добавить комментарий: