Член арифметической прогрессии

Арифметическая прогрессия, как правило, представлена рядом, в котором каждое число по сравнению с предыдущим монотонно убывает или возрастает на один и тот же шаг прогрессии. Онлайн калькулятор поможет найти первый член арифметической прогрессии можно, используя любой n член прогрессии и ее разность. Аналогично решаются задания формата "Найдите шестой член арифметической прогрессии (пятый, седьмой или любой другой)" .



Онлайн калькулятор
Найти член арифметической прогрессии

Известный член прогрессии A
Шаг (разность) прогрессии d
Произвести вычисления для n равного

Для того чтобы понимать, каким образом упорядочены числа арифметической прогрессии, рассмотрим следующий ряд:
a1
a2=a1+d
a3=a2+d=a1+d+d=a1+2d
a4=a3+d=a1+2d+d=a1+3d
...

Очевидно прослеживается закономерность формирования каждого следующего члена прогрессии, который можно выразить через предыдущий: an=a(n-1)+d или через первый член арифметической прогресии a1. Чтобы найти член арифметической прогрессии через первый член, к нему прибавляется количество шагов прогрессии, равное n-1, где n - это порядковый номер члена прогрессии, который нужно найти по заданным условиям. an=a1+(n-1)d

Наоборот, зная какой-либо определенный n член арифметической прогрессии, можно найти первый член. Для этого выводится специальная формула из предыдущей: a1=an-(n-1)d

Если по заданию нужно найти первые члены арифметической прогрессии, то в любом случае первым действием должно быть вычисление первого члена прогрессии, и затем путем прибавления разности прогрессии к каждому предыдущему числу можно будет найти необходимое количество первых членов, например, до пятого или до десятого члена.

Общее число членов арифметической прогрессии по умолчанию неограниченно, так как прибавление разности прогрессии является действием, возможным для бесконечного повторения. Предел такой последовательности будет стремиться в сторону плюс или минус бесконечности в зависимости от знака разности прогрессии. Так как последовательность будет бесконечно расти, для арифметической прогрессии можно найти сумму первых членов или сумму членов, определенных условием задания.

Соответственно, зная сумму арифметической прогрессии, найти первый член не составляет труда, если правильно перевернуть формулу. Сумма арифметической прогрессии - это среднее арифметическое (откуда и название) первого и последнего членов прогрессии, умноженное на общее количество членов прогрессии.

Первый член прогрессии в таком случае будет равен удвоенному отношению суммы к общему количеству членов за вычетом последнего члена в сумме.

Нет голосов